> 数学 >
若x,y,z均不为0,且x+y+z=0,证明:√(1/x^2+1/y^2+1/z^2)=|1/x+1/y+1/z|
人气:465 ℃ 时间:2020-05-24 10:26:12
解答
证明:|1/x+1/y+1/z|^2=1/x^2+1/y^2+1/z^2+2/(xy)+2/(yz)+2/(zx)
=1/x^2+1/y^2+1/z^2+2/(xy)+2/z(1/x+1/y)
=1/x^2+1/y^2+1/z^2+2/(xy)+2/z[(x+y)/xy]
因为z=-x-y
:|1/x+1/y+1/z|^2=1/x^2+1/y^2+1/z^2+2/(xy)-2/(x+y)[(x+y)/xy]
=1/x^2+1/y^2+1/z^2
两边开根号,得到结论
证毕
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版