若函数f(x)在[0,1]上可导,且f(0)=0,f(1)=1.证明:在[0,1]上至少存在两个不同的点x1,x2.
使[f'(x1)]+{f'(x2)]=2
上面的是错的,是使[1/f'(x1)]+{1/f'(x2)]=2
人气:498 ℃ 时间:2019-11-05 00:41:31
解答
∵函数f(x)在[0,1]上可导∴函数f(x)在[0,1]上必连续即函数f(x)在[0,1]上存在最大值及最小值由f(0)=0,f(1)=1,不妨设最大值为f(1)=1,最小值为f(0)=0则由介值定理知存在实数a∈[0,1],使得f(a)=1/2(由于1/2在[0,1]...
推荐
- 函数f(x)=2^x,X1,X2属于R,且X1≠X2,证明:1/2(f(X1)+f(X2))>f((X1+X2)/2)
- 分段函数f(x)=x+1/2,x属于【0,1/2),f(x)=2^(x-1),x属于【1/2,2),若存在x1,x2当0
- 已知函数f(x)=tanx,x∈(0,90°),若X1,X2∈(0,90°),且x1≠x2,证明:0.5[f(x1)+f(x2)]>f[(x1+x2)/2]
- 已知函数f(x)=-√a/a^x+√a(a>0且a≠1).证明:若x1+x2=1则f(x1)+f(x2)=-1
- 已知函数f(x)=xe^-x(x属于R) 如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2
- edta的全称叫什么?
- 商王——将都城迁到殷,史称”——\“
- “革+是”是什么字?怎么读?
猜你喜欢