已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-y-2=0与两坐标轴围成一个四边形,求此四边形的面积最小值,及此时a的值?
人气:274 ℃ 时间:2019-11-22 18:10:48
解答
直线l1: ax-2x=2a-4与l2:2x+a^2y=2a^2+4可以移项化成:直线L1:ax-2y-2a+4=0与L2:2x+a^2y-2a^2-4=0因为直线l1、l2均过定点(2,2) 且直线l1在y轴上的截距为b1=2-a>0 直线l2在x轴上的截距为b2=a2+1>0 所以S= b1·...
推荐
- 已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-4=0与两坐标轴围成一个四边形,求此四边形的面积最小值,及此时a的值.
- 已知实数A满足0小于A小于2,直线L1:AX-2Y-2A+4=0和L2:2X+A*AY-2A*A-4=0与两坐标轴围成一个四边形
- .已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^2*y-2a^2-y-2=0与两坐标轴围成一个四边形,求此四边形的
- 已知a属于(0,2),直线L1;ax-2y-a+4=0和直线L2;2x+a*ay-2a*a-y-2=0与坐标轴围成四边形求面积最小时a值
- 已知a∈(0,2),直线l1:ax-2y-2a+4=0和直线l2:2x+a^y-2a^-y-2=0与两坐标轴围成一个四边形,求此四边形的面积
- 司空见惯意思:
- 设i,j分别是平面直角坐标系内x轴,y轴的正方向上的单位向量,
- 用列举法表示下列各集合:(2){x|x=4k-1,-2<k<2,k∈Z}
猜你喜欢