【一】
求证:lim(x->a) x^2= a^2
证明:
① 对任意 ε>0 ,
要使: |x^2-a^2|< ε 成立,
令: |x-a|a) cosx = cosa
证明:
① 对任意 ε>0 ,
要使 | cosx - cosa| < ε 成立,
即只要满足: |cosx - cosa| = |-2sin[(x+a)/2]*sin[(x-a)/2]|
≤|2sin[(x-a)/2]| ≤|2[(x-a)/2]| =|x-a|< ε即可.
② 故存在 δ = ε > 0
③ 当 | x-a |< δ (=ε)时,
④ 恒有:|cosx - cosa | < ε成立.
∴ lim(x->a) cosx = cosa