设AD=EC=xcm,如图1,∵DB=1cm,AE=4cm,BC=5cm,
∴AB=x+1(cm),AC=4+x(cm),
∵△ADE∽△ABC,
∴
| AD |
| AB |
| AE |
| AC |
| DE |
| BC |
∴
| x |
| x+1 |
| 4 |
| x+4 |
| DE |
| 5 |
解得:x=2,
∴DE=
| 10 |
| 3 |
如图2,∵DB=1cm,AE=4cm,BC=5cm,
∴AB=x-1(cm),ac=4-x(cm),
∵△ADE∽△ABC,
∴
| AD |
| AB |
| AE |
| AC |
| DE |
| BC |
∴
| x |
| x−1 |
| 4 |
| 4−x |
| DE |
| 5 |
解得:x=2,
∴DE=10,
综上可得:DE=
| 10 |
| 3 |
