数列{a
n}满足递推公式a
n=3a
n-1+3
n-1(n≥2),又a
1=5,则使得{
}为等差数列的实数λ=( )
A. 2
B. 5
C. -
D.
人气:153 ℃ 时间:2019-08-21 23:27:37
解答
设bn=an+λ3n,根据题意得bn为等差数列即2bn=bn-1+bn+1,而数列{an}满足递推式an=3an-1+3n-1(n≥2),可取n=2,3,4得到3a1+32−1+λ32+3a3+34−1+λ34=23a2+33−1+λ33,而a2=3a1+32-1,a3=3a2+33-1=3(3a1+32-1)...
推荐
猜你喜欢