> 数学 >
a,b是正整数,证明30整除ab(a^4-b^4)
人气:435 ℃ 时间:2020-05-22 06:30:17
解答
原式=ab(a-b)(a+b)(a^2+b^2)
由于30能分为2*3*5如果证明可以被235整除,那么就可以被30整除
1证明被2整除:如果ab有偶数,那么毫无疑问,如果ab都是奇数,那么a+b就可以被2整除
2证明被3整除:如果ab有被3整除,也是毫无疑问的,如果都没有,那么ab必须不能被3整数余数相同,否则a-b可以,如果余数不同,则一定是1和2,那么a+b可以
3证明被5整除.同样的道理,ab不能被5除有同样的余数,否则a-b满足,也不能是互补的余数(相加为5),否则a+b满足,所以ab被5除余数一定是1-3,2-4,由于1*1+3*3=10,2*2+4*4=20都可以被5整除,所以a^2+b^2也能被5整除,所以命题得证
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版