已知函数f(x)=2acos^2x+bsinxcosx-根号3/2,且f(0)=根号3/2,f(pai/4)=1/2
1.求f(x)的最小正周期
2.求f(x)的单调递减区间
3.函数f(x)的图像经过怎样的平移才能使图像对应的函数变为奇函数
人气:371 ℃ 时间:2019-08-20 11:53:56
解答
1、f(x)的最小正周期为2π/2=π
2、令2kπ-π/2≤2x+π/3≤2kπ+π/2,以求f(x)的单调增区间,得
kπ-5π/12≤x≤kπ+π/12,(k∈Z)
令2kπ+π/2≤2x+π/3≤2kπ+3π/2,以求f(x)的单调减区间,得
kπ+π/12≤x≤kπ+7π/12,(k∈Z)
3、f(x)=sin(2x+π/3)对应的奇函数为±sin2x
f(x)=sin(2x+π/3)= sin[2(x+π/6)]
f(x)向左平移π/3得f(x+π/3)=sin[2(x+π/3+π/6)]= -sin2x,是奇函数.
继续向左平移周期的整数倍,得f(x+π/3+kπ)=sin[2(x+π/3+kπ+π/6)]= -sin2x,仍是奇函数.
f(x)向右平移π/6得f(x-π/6)=sin[2(x-π/6+π/6)]=sin2x,是奇函数.
继续向右平移周期的整数倍,得f(x-π/6-kπ)=sin[2(x-π/6-kπ+π/6)]=sin2x,仍是奇函数.
综上所述,
f(x)向左kπ+π/3,或向右平移kπ-π/6,(k∈Z),仍是奇函数.
推荐
- 已知函数f(x)=2acos^2x+bsinxcosx-根号3/2,且f(0)=根号3/2,f(pai/4)=1/2 把它化简
- 已知函数f(x)=2acos2x+bsinxcosx-32,且f(0)=32,f(π4)=1/2.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.
- 已知函数f(x)=2acos平方x+bsinxcosx.且f(0)=2.f(60度)=1/2+根号3/2.
- 已知函数f(x)=2acos^2x+bsinxcosx,f(0)=2,f(π/3)=1/2+(根号3)/2
- 设函数f(x)2acos²x+bsinxcosx满足f(0)=2,f(π/3)=(根号3+1)/2
- 在三角形ABC中,设abc是角ABC的对边试根据以下已知条件解三角形1.a=2b=2倍根号2,c=根号6+根号2
- 人的大脑是怎样的构成的?
- 如果能将一张厚度为0.05mm的报纸对折,在对折,再对折……对折50次后,根据报纸的厚度是多少?你相信这报纸可以在地球和月球之间建一座桥吗?
猜你喜欢