以F1,F2为焦点的椭圆X^2/a^2+y^2/b^2=1(a>b>0),斜率为k的直线L过左焦点F1且与椭圆的焦点为A,B
以F1,F2为焦点的椭圆X^2/a^2+y^2/b^2=1(a>b>0),斜率为k的直线L过左焦点F1且与椭圆的交点为A,B,与y轴的交点为M,又B为线段F1M的中点,若|K|≤√14/2,求椭圆离心率的取值范围.
人气:398 ℃ 时间:2019-10-19 00:52:31
解答
左焦点F1(-c,0),设过左焦点的直线为y=k(x+c)x=0 => y=kc => M=M(0,kc)B为F1M中点,则B=B(-c/2,kc/2)B在椭圆上,则 (-c/2)^2/a^2+(kc/2)^2/b^2=11/4*c^2/a^2+k^2/4*c^2/b^2=11/4*c^2/a^2+k^2/4*c^2/(a^2-c^2)=1e=c/a =>...
推荐
- 已知椭圆c:x2/a2+y2/b2=1(a大于b大于0)的两个焦点分别为f1,f2,斜率为k的直线l过左焦点f1且于椭圆的交点为
- 已知椭圆C:x²/a²+y²/b²=1﹙a>b>0﹚的两个焦点分别为F1,F2,斜率为k
- 椭圆C x^2/a^2+y^2/b^2=1,焦点F1,F2.斜率为k的直线L过右焦点F2与椭圆交A,B.L与Y轴交于P,线段PF2中点为B
- 直线l的斜率为k,它经过椭圆x^2/2+y^2=1的左焦点F1与椭圆交于A,B两点,当S△ABF2=4/3,求k的值
- 设F1,F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,求E的离心率
- It took us three hours _____in the snow last night A get home B getting home C to get home
- 联想和想象文章
- 根据课外阅读的名著,不全下面的名人对联
猜你喜欢