已知函数f(x)是定义在正实数集上的单调函数,且满足对任意x>0,都有f[f(x)-lnx]=1+e,则f(1)=______.
人气:183 ℃ 时间:2019-08-19 10:24:52
解答
f[f(x)-lnx]=1+e,对任意x都成立,
说明f(x)-lnx是一个定值k
f(k)=1+e
f(x)=lnx+k
∴f′(x)=
>0
所以:f(x)单调增.
f(k)=lnk+k=1+e
解得:k=e
所以:f(x)=lnx+e
所以:f(1)=e.
故答案为:e.
推荐
猜你喜欢
- 铜与浓硫酸反应,为什么有黑色物至生成
- 螳螂捕蝉的课后题,擅长语文的亲请进!
- 金属硬度换算
- 已知三点坐标求空间平面方程
- 两个圆柱的底面积相等,高的比是3/2,已知较小圆柱的体积为20立方分米,求较大圆20
- 鸡兔同笼,共有头22个,脚64只,问鸡兔有多少只?
- I spent the whole day in my room,but I did not write a single card 3Q
- 如图是一个钟面,分针长6厘米,时针长4厘米,分针的尖端走一圈走多少厘米?时针走一圈扫过的面积是多少?