设a1 a2 a3是齐次线性方程组Ax=0的一个基础解系,证明a1+a2,a2+a3,a3+a4也是Ax=0的一个基础解系
人气:474 ℃ 时间:2020-01-06 09:28:14
解答
a1+a2,a2+a3,a3+a1证明是基础解系即证明a1+a2,a2+a3,a3+a1线性无关,设存在三个数b1,b2,b3使得b1(a1+a2)+b2(a2+a3)+b3(a3+a1)=0,即 ( b1+b3)*a1+(b2+b1)a2+(b3+b2)a3=0因为a1 a2 a3是齐次线性方程组Ax=0的一个基础解...
推荐
- 证明题:设a1,a2,a3是齐次线性方程组Ax=0的基础解系,
- 设a1,a2,a3,是齐次线性方程组AX=0的一个基础解系,
- 设a1,a2,a3.an是齐次线性方程组AX=0的一个基础解系,证明:B1=a2+a3...as,B2=a1+a3+.+as,.Bs=a1+a2+.as-1也是该方程的基础解系.
- 设β是非齐次线性方程组Ax=b(b≠0)的解,a1,a2,a3是对应齐次线性方程组Ax=0的线性无关解,证明向量组a1+β
- 设a1,a2,a3是四元非齐次线性方程组Ax=b的三个解向量.
- yesterday'football match made them feel (bored,boring)
- nether nor与either的意思和so that的意思与用法?用法句个例子和位置
- 若P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1、F2是左、右焦点,设角F1PF2=θ,求证S△F1PF2=(b^2)*tan(θ/2
猜你喜欢