一道用几何方法证明的代数题,
已知a、b均为小于1的正数,证明不等式:(√a²+b²)+(√(1-a) ²+b²)+(√a²+(1-b) ²)+(√(1-a) ²+(1-b) ²) ≥2√2
有人和我说用一个边长是1的正方形,和四个直角三角形,直角边分别是a,b;(1-a),b;a,(1-b);(1-a),(1-b).
人气:122 ℃ 时间:2020-01-28 20:34:36
解答
你那个有人说的很对呀!
边长是1的正方形,在一顶点出发的两相邻边取线段长分别a,b,得到第一个直角三角形,剩下的三个也有了.
要证的不等式即是说:正方形的内接四边形,面积为正方形的一半时时,内接四边形边长之和大于等于正方形的两对角线长之和.
我说的这个几何结论还要更广泛一些.当你画出图之后会发现很简单的.
推荐
- 一道用代数方法做的几何证明题!
- 请你用代数的方法求解这道几何题
- 绝对值的代数意义和几何意义 请分开说明
- 求数学选修4-1几何证明选讲习题1.1第3题证明方法…谢谢…
- 有哪些代数问题可以用几何方法来解决?
- 一块长方形铁片,长18.84DM,宽5dm,用这块铁皮卷成一个圆柱形水桶的侧面,另配一个底面制成一个底面积最大
- 中国历史上推行法家学派治理国家的有为皇帝都有哪些?
- f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道怎么证明
猜你喜欢