抛物线y2=2px 过其焦点且斜率为1的直线交抛物线与A B两点 若线段AB的中点纵坐标为2 该抛物线的准线方程
设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2,
两式相减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为1,所以y1− y2/x1− x2=1,
所以有y1+y2=2p,又线段AB的中点的纵坐标为2,
即y1+y2=4,所以p=2,所以抛物线的准线方程为x=-p2=-1.
为什么y1+y2=2p
人气:470 ℃ 时间:2020-01-30 02:20:26
解答
写得很清楚了:
∵(y1-y2)(y1+y2)=2p(x1-x2),
又∵直线的斜率为1,
∴(y1− y2)/(x1− x2)=1,
∴有y1+y2=2p,
推荐
猜你喜欢