设数列{an},Sn,a1=1,Sn=an+1-1,设bn=2^n/(an+1)(an+1+1),Tn=b1+b2+…+bn,求证:1/3小于等于Tn小于1
人气:241 ℃ 时间:2020-05-27 05:07:06
解答
Sn=a(n+1)-1
S(n-1)=an-1
an=Sn-S(n-1)=a(n+1)-an
a(n+1)=2an
故{an}是公比为2的等比数列
an=a1*2^(n-1)=2^(n-1)
a(n+1)=2^n
bn=2^n/[a(n+1)][a(n+1)+1]=1/(2^n+1)
因bnbn=2^n/[(an)+1][a(n+1)+1]bn=2^n/[(an)+1][a(n+1)+1]=2^n/[2^(n-1)+1][2^n+1]=2{1/[2^(n-1)+1]-1/(2^n+1)}Tn=2{(1/2-1/3)+(1/3-1/4)+...+1/[2^(n-1)+1]-1/(2^n+1)}=2[1/2-1/(2^n+1)]=1-2/(2^n+1)可见Tn<1因n=1,2,..所以Tn=1-2/(2^n+1)≥1-2/(2+1)=1/3得证
推荐
- 已知数列{an}的前N项和为Sn 且an+1=Sn-n+3,a1=2,设Bn=n/Sn-n+2前N项和为Tn 求证Tn 小于4/3
- 各项为正数的数列{an},其前n项和为Sn,且Sn=(√(Sn-1)+√a1)^2(n≥2),数列{bn}的前n项和为Tn,(见下)
- 已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn
- 已知数列{an},{bn}满足a1=2,2an=1+anan+1,bn=an-1,设数列{bn}的前n项和为Sn,令Tn=S2n-Sn. (Ⅰ)求数列{bn}的通项公式; (Ⅱ)判断Tn+1,Tn(n∈N*)的大小,并说明理由.
- 设数列{an}的前n项和sn,已知a1=2,sn=an+2^n-2,设bn=log2an,求数列{bn}的前n项和Tn
- 找课文,A man who never gave up .需要全文.
- obama received the Nobel Peace Prize ,how to criticize this thing
- 表示腿的动作的词(30个)
猜你喜欢