∫ (x + 1)/√(3 + 2x - x²) dx
= ∫ (x + 1)/√[4 - (x² - 2x + 1)]
= ∫ (x + 1)/√[4 - (x - 1)²],x - 1 = 2sinz,dx = 2cosz dz
= ∫ (2sinz + 2)/|2cosz| * (2cosz) dz
= 2∫ (sinz + 1) dz
= 2z - 2cosz + C
= 2arcsin[(x - 1)/2] - 2 * √(3 + 2x - x²)/2 + C
= 2arcsin[(x - 1)/2] - √(3 + 2x - x²) + C