【分析】书上的证明是没错的.书上是用了行列式的以下两个性质
①存在完全相同的两行(列)的行列式值为零;
②行列式中某元素aij的余子式的值,与该元素aij的数值无关.(这点是理解此题的关键)
设原行列式 An =
a11 a12 …… a1n
a21 a22 …… a2n
a31 a32 …… a3n
…………………………
ai1 ai2 …… ain ← — — — —(第 i 行)
…………………………
aj1 aj2 …… ajn ← — — — —(第 j 行)
…………………………
an1 an2 …… ann
于是,书上构造了一个新的行列式 Bn.Bn是将原行列式An的第 j 行元素用第 i 行元素替换得来的.(An与Bn是两个数值完全不相等的行列式,要搞清楚!)
即,Bn =
a11 a12 …… a1n
a21 a22 …… a2n
a31 a32 …… a3n
…………………………
ai1 ai2 …… ain ← — — — —(第 i 行)
…………………………
ai1 ai2 …… ain ← — — — —(第 j 行)
…………………………
an1 an2 …… ann
由于An与Bn除了第 j 行元素外,其余所有数字都对应相等,
所以便有,An 与 Bn分别按第 j 行元素展开的余子式对应相等,即Bjk=Ajk (k=1,2,……,n)
(**注:理解好这一步是理解全题的关键)
所以Bn按第 j 行展开,得
Bn=ai1Aj1+ai2Aj2+……+ainAjn
而∵Bn存在两行完全相同的元素,
∴Bn = 0
即,ai1Aj1+ai2Aj2+……+ainAjn =0 (证毕)