已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
人气:244 ℃ 时间:2019-08-17 21:09:47
解答
∵奇函数f(x)在定义域(-1,1)上单调递减,
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)
即
解得:
<a<2故实数a的取值范围
<a<2
推荐
- 已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
- 设f(x)是定义域为R的奇函数,且在区间(-∞,0)上是减函数,实数a满足不等式f(3a^2+a-3)﹤f(3a^2-2a)
- 已知奇函数f(x)在其定义域(-1,1)内单调递减,求满足不等式f(1+a)+f(1-a^2)
- 已知奇函数f(x)在定义域(-1,1)上是减函数,实数a满足不等式f(1-a)+f(1-2a)
- 已知减函数f(x)的定义域是实数集r,m,n都是实数,如果不等式f(m)-f(n)>f(-m)-f(-n)成立,那么下列不等式成
- 将一个长方体的高减少2厘米就变成了一个正方体,表面积减少了 24平方厘米,求原来体积
- 2a-3b/b2-a2 -a+3b/a2-b2 +a+2b/a2-b2
- 有哪个春天里的花园比这里更加美丽呢?(把反问句改为陈述句)
猜你喜欢