设f(x)是定义域为R的奇函数,且在区间(-∞,0)上是减函数,实数a满足不等式f(3a^2+a-3)﹤f(3a^2-2a)
求实数a的取值范围
人气:118 ℃ 时间:2019-08-18 03:33:03
解答
f(x)是定义域为R的奇函数,且在区间(-∞,0)上是减函数,因此在整个R上是减函数.
所以由不等式即得:
3a^2+a-3>3a^2-2a
解得:a>1
推荐
- 已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
- 已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
- 已知减函数f(x)的定义域是实数集r,m,n都是实数,如果不等式f(m)-f(n)>f(-m)-f(-n)成立,那么下列不等式成
- 已知奇函数f(x)在定义域(-1,1)上是减函数,实数a满足不等式f(1-a)+f(1-2a)
- 设f(x)定义域是实数集R上的偶函数,且在(负无穷,0)上是减函数,又f(2a^2+a+1)大于f(3a^2-2a+1),求
- 正方形纸片绕它的一条边旋转一周形成的几何体是圆柱体,这说明
- 5又3分之2时=()时()分 5千克50克=()千克=()克
- 给老人们讲故事,使他们开心英文翻译
猜你喜欢