已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
人气:339 ℃ 时间:2019-08-18 02:58:45
解答
∵奇函数f(x)在定义域(-1,1)上单调递减,
∴不等式f(a-2)+f(6-3a)<0
可化为f(a-2)<-f(6-3a)
即f(a-2)<f(3a-6)
即
解得:
<a<2故实数a的取值范围
<a<2
推荐
- 已知奇函数f(x)在定义域(-1,1)上单调递减,求使不等式f(a-2)+f(6-3a)<0成立的实数a的取值范围.
- 设f(x)是定义域为R的奇函数,且在区间(-∞,0)上是减函数,实数a满足不等式f(3a^2+a-3)﹤f(3a^2-2a)
- 已知奇函数f(x)在其定义域(-1,1)内单调递减,求满足不等式f(1+a)+f(1-a^2)
- 已知减函数f(x)的定义域是实数集r,m,n都是实数,如果不等式f(m)-f(n)>f(-m)-f(-n)成立,那么下列不等式成
- 已知f(x)的定义域0到正无穷的增函数,f(2)=1,对任正实数x,y满足f(x*y)=f(x)+f(y),解不等式f(x)+f(x-2)
- 关于星星的英文句子
- 如果空调设置成制冷但是室外温度比空调设置温度低会怎样?会不会一开始就不工作,还是制热?
- 初二数学解二元一次方程组
猜你喜欢