> 数学 >
已知二次函数y=ax2+bx+c(a≠0)图象经过A(1,1)、B (2,4)和C三点.
(1)用含a的代数式分别表示b、c;
(2)设抛物线y=ax2+bx+c顶点坐标(p,q),用含a的代数式分别表示p、q;
(3)当a>0时,求证:p<1.5,q≤1.
人气:220 ℃ 时间:2019-08-20 12:33:12
解答
1.1=a+b+c .(1)4=4a+2b+c .(2)(2)-(1):3=3a+b,b=3-3a代入(1):c=1-a-b=1-a-3+3a=2a-22.y=ax^2+bx+c=a[x^2+b/ax+(b/(2a))^2-(b/(2a))^2]+c=a(x+b/(2a))^2+c-a*(b/(2a))^2p=-b/(2a)=-3(1-a)/(2a)=3/2(1-1/a)q=c-a*(b/(2...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版