函数的二阶导数表示函数的拐点,
人气:413 ℃ 时间:2020-03-31 00:44:02
解答
意义如下:
(1)斜线斜率变化的速度
(2)函数的凹凸性.
二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的.
应用:
如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:
f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方.
推荐
猜你喜欢
- 算二十四点 用5,5,-2,10
- 将1~9这九个数字填入下图的“O”,使每条边上的四个数字的和都等于17.
- 铅球同一高度以相同速度投出,第一次斜上,第二次水平,第三次更斜上,不计空气阻力,三次落地速度比较
- 脂肪酸的元素种类是什么啊
- P为矩形ABCD内的一点,且PA=2,PB=3,PC=4,则PD的长等于多少?
- 如何在企业运营中使用数学进行数据分析
- 碳粉和氧化铜粉末都是黑色的,请设计两种方法将这两种粉末鉴别出来,并说明哪种方法更好
- 已知sinA+cosA=-根号10/5求(1) 1/sinA + 1/cosA 的值 (2)tanA的值