点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.
试说明△CEF为正三角形.
人气:118 ℃ 时间:2020-02-04 08:36:09
解答
证明:∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形
推荐
- 如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
- 如图,点C为线段AB上一点,△ACM、△CBN为等边三角形,直线AN、MC、交于点E,直线BM、CN交于点F
- 如图,点C为线段AB上的一点,△ACM、△CBN为等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.△CEF是
- 已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
- 点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交于F点.
- 一个书架,上层放的书的本数是下层的2.4倍,如果把上层的书搬56本到下层,这两层书的本数就同样多.原来两层各放多少本书?
- 数学分析:sinxcosx/(sinx+cosx)的不定积分
- 有11个球1-11,选6个球,共有多少个组合,公式怎么算?
猜你喜欢