点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM,CN交于点F.
试说明△CEF为正三角形.
人气:313 ℃ 时间:2020-02-04 08:36:09
解答
证明:∵△ACM,△CBN是等边三角形
∴AC=CA,AN=BM,∠MCA=∠NCB=60
∴∠MCN=180-∠MCA-∠NCB=180-60-60=60
∴∠ACN=∠MCB=120
∴△ACN≌△MCB
∴∠NAC=∠BMC
∴△ACE≌△MCF
∴CE=CF
∴△CEF为正三角形
推荐
- 如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.
- 如图,点C为线段AB上一点,△ACM、△CBN为等边三角形,直线AN、MC、交于点E,直线BM、CN交于点F
- 如图,点C为线段AB上的一点,△ACM、△CBN为等边三角形,直线AN、MC交于点E,直线BM、CN交于点F.△CEF是
- 已知:如图1,点C为线段AB上一点,△ACM,△CBN都是等边三角形,AN交MC于点E,BM交CN于点F.
- 点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交于F点.
- 3/7,42.8%,0.43 谁最大 谁最小
- 在等比数列{an}中,a4+a7=2,a5a6=-8,则a1+a10=_.
- 己知a+b=2,ab=-1则¹/a+¹/b=()
猜你喜欢