(Ⅰ)由题意:f′(2)=8+2a+1=0
解得a=-
| 9 |
| 2 |
(Ⅱ)方程2a2+ax+1=0的判别式△=a2-8,
(1)当△≤0,即-2
| 2 |
| 2 |
f′(x)≥0在(0.+∞)内恒成立,此时f(x)为增函数;
(2)当△>0,即a<-2
| 2 |
| 2 |
要使f(x)在(0.+∞)内为增函数,只需在(0.+∞)内有2a2+ax+1≥0即可,
设g(x)=2a2+ax+1,
由
|
| 2 |
由(1)(2)可知,若f(x)在(0.+∞)内为增函数,a的取值范围是[-2
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 9 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
|
| 2 |
| 2 |