> 数学 >
5sinB=sin(2A+B) 求证2tan(A+B)=3tanA
人气:150 ℃ 时间:2020-04-14 12:07:26
解答
原式可以写成:
5sin[(A + B) - A] = sin[(A + B) + A]
左边 = 5sin(A + B)cosA - 5cos(A + B)sinA
右边 = sin(A + B)cosA + cos(A + B)sinA ,移项得:
4sin(A + B)cosA = 6cos(A + B)sinA
两边除以 2cosAcos(A + B) 即得:
2tan(A+B)=3tanA
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版