V是次数小于4的实系数一元多项式的全体的线性空间,V上的线性变换T定义为:任意f(x)属于V,T(f(x))=f''(x),求线性变换T在基{1,x,x^2,x^3}下的矩阵.
人气:281 ℃ 时间:2020-03-28 14:51:31
解答
T(1,x,x^2,x^3)
= (T(1),T(x),T(x^2),T(x^3))
= (0,0,2,6x)
= (1,x,x^2,x^3) K
K =
0 0 2 0
0 0 0 6
0 0 0 0
0 0 0 0
推荐
- V是次数小于3的实系数一元多项式的全体的线性空间,V上的线性变换T定义为:任意f(x)属于V,T(f(x))=f(x)+f(x+1),求线性变换T在基{1,x,x^2,x^3}下的矩阵.
- 线性变换T在基下的矩阵怎么求,
- 怎样求线性变换在基下的矩阵
- 线性变换在基下的矩阵是怎么算的
- 设向量空间V的线性变换a在基{ε1,ε2,ε3}下的矩阵为A,a能否在某组基下为对角矩阵?
- ()全社会一致行动起来,()维护和平,制止战争.关联词填空
- 比较大小 1/(tan(-13π/7)),1/(tan9π/8)
- 一批苹果,卖出总数的20%后,有运来40箱,这时的苹果与原来的比是28:25,这时的苹果多少箱
猜你喜欢