已知二次函数f(x)=ax^2+bx+c,若f(-1)=0试判断函数零点个数;若对x1,x2属于R,且x1
证明方程f(x)=1/2[f(x1)+f (x2)]必有一个实数根属于(x1,x2).
人气:296 ℃ 时间:2019-08-20 14:51:48
解答
f(-1)=0,则一根为-1.由韦达定理,另一根为c/a,
故方程有两实根.
令g(x)=f(x)-[f(x1)+f(x2)]/2
g(x1)=[f(x1)-f(x2)]/2
g(x2)=[f(x2)-f(x1)]/2
g(x1)g(x2)=-[f(x1)-f(x2)]^2/4
推荐
- 已知二次函数f(x)=ax^2+bx+c(a≠0).(1)若f(-1)=0,a≠c,试判断函数f(x)=ax^2+bx+c的零点个数.
- 已知二次函数f(x)=ax2+bx+c. (1)若a>b>c且f(1)=0,试证明f(x)必有两个零点; (2)若对x1,x2∈R且x1<x2,f(x1)≠f(x2),方程f(x)=1/2[f(x1)+f(x2)]有两个不等实根,证明必有
- 二次函数f(x)=ax的平方+bx+c ,已知a=1,若x1,x2是函数f(x)的零点,且x1,x2∈(m,m+1),其中m为实数,
- 已知二次函数f(x)=ax^2+bx+c(1)f(-1)=0,试判断函数零点个数(2)是否存在a,b,c使函数同时满足一下条件1.对任意x,f(x-4)=f(2-x)且f(x)>=0 .2对任意x,都有0
- 若函数f(x)=ax+b的零点为2,那么函数g(x)=bx2-ax的零点是( ) A.0,2 B.0,12 C.0,-12 D.2,12
- 里程:1.4km以下(含4km)收费:8元 2.4km以上部分每增加1km 收费:1.2元 若出租车行驶的里程为x(km)(x为大于4km的整数),请用关于x的代数式表示车费
- 如果Χ大于或等于二分之一,那么1减2X的绝对值等于多少?快,马上要用
- -sina与sina在讨论单调区间时的差别
猜你喜欢