> 数学 >
若函数f(x)=-x^3+12x+a在区间[-1,1]上的最大值为2,则它在该区间上的最小值为
人气:343 ℃ 时间:2019-08-16 21:35:25
解答
f(x)=-x^3+12x+a
f'(x)=-3x²+12=0
-3(x+2)(x-2)=0
x=-2或x=2
当x∈【-1,1】时,
f'(x)>0
所以
函数是增函数,即最大值=f(1)=-1+12+a=2
a=-9
所以
最小值=f(-1)=1-12+a=1-12-9=-20
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版