已知f(x)与g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2,且F(-2)=5,则F(2)=___.
人气:170 ℃ 时间:2020-01-28 01:00:57
解答
令h(x)=F(x)-2=af(x)+bg(x),
由于f(x)和g(x)都是定义在R上的奇函数,
故函数h(-x)=af(-x)+bg(-x)=-af(x)-bg(x)=-h(x),
故函数h(x)为奇函数.
再由F(-2)=5,可得h(-2)=F(-2)-2=5-2=3,
故h(-2)=-h(2)=3,则h(2)=-3,F(2)-2=-3,
求得F(2)=-1,
故答案为:-1.
推荐
- 已知f(x)与g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2,且F(-2)=5,则F(2)=_.
- 已知f(x)与g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2,且F(-2)=5,则F(2)=_.
- 若函数f(x),g(x)都是定义在R上奇函数,F(x)=af(x)+bg(x)+2在区间(0,+∞),最大值5,
- f(x)和g(x)都是定义在R上的奇函数,若F(x)=af(x)+bg(x)+2在(0,+无穷上最大值为5.求F(x)在(-无穷,0)最
- 设f(x),g(x)都是定义域在R上的奇函数,F(x)=af(x)+bg(x)+2在区间(0,正无穷)上,最大值是5,求F(x)在(负无穷,0)上的最小值
- 英语翻译
- 走同样的路程,甲要5小时走完,乙要7小时走完,甲、乙的速度比是( ) A.5:7 B.7:5 C.17:15
- 四年级语文暑假作业本人教版第67页的答案
猜你喜欢