平面内有向量OA=(1,7) OB=(5,1) OP=(2,1),点Q为直线OP上的一个动点;
(1)当QA·QB去最小值时,求OQ的坐标
(2)当点Q满足(1)的条件和结论时,求cos∠AQB的值
人气:300 ℃ 时间:2020-05-16 08:44:43
解答
1.又题意知A(1,7)B(5,1)P(2,1)Q(2x,x)
QA·QB=(1-2x,7-x)·(5-2x,1-x)=(1-2x)·(5-2x)+(7-x)·(1-x)
=5x^2-20x+12
当QA·QB去最小值时,x=2
故OQ(4,2)
2,知道AQB坐标后,可求出AQ QB BA长度 在用余弦定理求得
推荐
- 平面上的三个力F1F2F3作用于一点处于平衡状态,|F1|=1N,|F2|=2N,F1与F2的夹角为2π/3,求(1)F3的大小;(2)F3与F1夹角的大小.(求详解)
- 【高一数学】平面向量的题目》》》》
- 1,若向量m=(-2,4x),n=(-3x,-x),且m,n的夹角为钝角,则x的取值范围.
- 已知平面向量向量a,向量b满足向量a的绝对值=1向量b的绝对值=2,向量a与向量b的夹角为60,则“m=1”是(向量a-m向量b)垂直与向量a“的
- 高一数学,平面向量问题.
- 已知二分之一,3,4这三个数,再添上一个数可以组成一个比例,这个数可以是()
- A={0,a}B={x|x∈A} A与B什么关系
- 用描述法表示大于9的所有实数组成的集合为
猜你喜欢