z=w+3+3i,w属于C,且w+3/w-3是线纯虚数,求w对应点的轨迹,求|z|的最大值和最小值
是3根号3i,还多打个字
人气:394 ℃ 时间:2020-01-29 07:57:44
解答
设w=a+bi,则
(w+3)/(w-3)
=(a+3+bi)/(a-3+bi)
=(a+3+bi)(a-3-bi)/[(a-3)^2-(bi)^2]
=[(a^2-3^2+b^2)-6bi]/[(a-3)^2+b^2]
此数为纯虚数,则
a^2-3^2+b^2=0,即有
a^2+b^2=3^2,
∴w的轨迹为一个圆心在原点O,半径为r=3的圆
|z|=|w+3+3i|=|w-(-3-3i)|
|z|表示w轨迹上的点到复平面上的定点A(-3,-3)之间的距离
易知有 OA=3√2
由几何关系可知,
|z|的最大值为 |z|max=OA+r=3√2+3
|z|的最小值为 |z|min=OA-r=3√2-3
推荐
- 2|z-3-3i|=|z|,求|z|的最大值和最小值
- 已知虚数z满足|z+1|=4-|z-1|,则z+3i的模的最大值为( ) A.3+√3 B.2√7 C.√13 D.不存在
- 已知复数z满足z+2/z-2为纯虚数,则|z+a-3i|的最大值为?
- 4.已知|z|=3,且z+3i是纯虚数,则z=________
- z属于C 且z+3 /z—3为纯虚数 求z对应点的轨迹
- 在△ABC中,角A,B,C所对的边长分别为a,b,c,且COS(A+B)/2=1/2
- 在等差数列中,a1+a3=8,且a4为a2,a9的等比中项,求此数列的首项,公差,前n项和
- when waiting for the message from the one you love .10086 is the biggest en
猜你喜欢