设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
人气:397 ℃ 时间:2019-08-18 06:39:33
解答
令 F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a)-f(a)=f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由闭区间连续函数介值定理,必然存在一点ξ,使得F(X)的值为0
即是题目所要你证明的等式f(ξ)=f(ξ+a)
推荐
- 设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
- 设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§
- 设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
- 设函数f(X)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上存在一点c,使f(C)=f(c+a)
- 提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
- 物体被细绳拉着在竖直平面内做圆周运动,已知它经过最高点时的速度是10M/s,绳长0.5M,物体的质量为100G,则它在这一位置受到绳的拉力是____N,如果以同样的速率通过最低点,这时绳的拉力为 __ N 物体通过最高点时的最小速度是__
- A stone hit ( ) and he fell down on the ground.
- We are going to play sports.(改为一般疑问句,并做肯定回答)
猜你喜欢