> 数学 >
设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
人气:262 ℃ 时间:2019-08-18 06:39:33
解答
令 F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(2a)-f(a)=f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由闭区间连续函数介值定理,必然存在一点ξ,使得F(X)的值为0
即是题目所要你证明的等式f(ξ)=f(ξ+a)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版