设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
解题的思路和入点是什么
人气:342 ℃ 时间:2019-12-13 05:45:44
解答
设函数F(x) = f(a+x)-f(x) 则F(x)在[0,2a]上连续
F(a) = f(a+a)-f(a)=f(2a)-f(a) 又因为f(0)=f(2a) 所以F(a) =f(0)-f(a)
F(0) = f(a)-f(0) =-F(a)
由连续区间函数介值定理,必然存在一点ξ,使得F(X)的值为0
若使得F(x)=0,意味着f(a+x)-f(x)=0所以f(a+x)=f(x)得证.
推荐
- 设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§
- 设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
- 设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
- 设函数f(X)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上存在一点c,使f(C)=f(c+a)
- 提个函数连续性的证明题…… 设f(x)在区间[0,2a]上连续且f(0)=f(2a).证明至少存在一
- 当自变量X取何值时,函数Y=-2分之1X+2与Y=2X-6的值相等?这个函数值是多少?
- 从0点到3点,钟表面上时针和分针何时成60°的角
- 成功小学4年1班的同学出去游玩全班36人中午订盒饭每人1份买5送1每份6元最少要花多少元?
猜你喜欢