> 数学 >
一道数学分析证明题,函数连续性
证明:若f(x) 在[a,b]上连续,则函数m(x)=inf(f(t)) (其中a
人气:328 ℃ 时间:2019-11-07 10:39:21
解答
下面只证明M(x)在[a,b]上连续,m(x) 的证明类似.
任给 x0 属于[a,b]:
情形1.f(x0) = M(x),
任给 e > 0,根据连续性,存在t > 0,使得 当 x属于 x0 的 t-邻域时,|f(x)-f(x0)| f(x0) - e = M(x0) - e.
2.如果 x < x0,显然 M(x) x0,M(x) = sup{M(x0),f(s)},x0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版