> 数学 >
已知f(x)=
a-x2-4x(x<0)
f(x-2)(x≥0)
,且函数y=f(x)-2x恰有3个不同的零点,则实数a 的取值范围是(  )
A. [-4,0]
B. [-8,+∞)
C. [-4,+∞)
D. (0,+∞)
人气:297 ℃ 时间:2020-03-23 17:09:22
解答
因为当x≥0的时候,f(x)=f(x-2),
当x∈[0,2)时,x-2∈[-2,0),此时f(x)=f(x-2)=a-(x-2)2-4(x-2)
当x∈[2,4)时,x-4∈[-2,0),此时f(x)=f(x-2)=f(x-4)=a-(x-4)2-4(x-4)
依此类推,f(x)在x<0时为二次函数a-x2-4x=-(x+2)2+a+4,
在x≥0上为周期为2的函数,重复部分为a-x2-4x=-(x+2)2+a+4在区间[-2,0)上的部分.
二次函数a-x2-4x=-(x+2)2+a+4顶点为(-2,a+4),
y=f(x)-2x恰有3个不同的零点,即f(x)与y=2x恰有3个不同的交点,
需满足f(x)与y=2x在x<0时有两个交点且0≤a+4≤4或f(x)与y=2x在x<0时有两个交点且a+4>4
∴-4≤a≤0或a>0
综上可得a≥-4
故选C
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版