双曲线x²/9-y²/16=1的两个焦点为F1、F2,点p在双曲线上,若PF1⊥PF2,则点P到x轴的距离是-----
把过程写出来
人气:112 ℃ 时间:2019-08-18 15:21:12
解答
根据题意有:F1(-5,0)F2(5,0)根据双曲线的定义有|PF1-PF2|=2a=6
∵双曲线是关于x轴对称的,不妨假设P点在双曲线的左支上.
又∵PF1⊥PF2∴PF1^2+PF2^2=F1F2^2=100①PF2-PF1=6②∴②^2-①=-2PF1*PF2=-64
∴PF1PF2=32又∵S△PF1F2=PF1*PF2\2=16设P点到X轴的距离为L∴F1F2*L\2=16
所以L=3.2
自己写的过程,如果不好请多多包涵!
推荐
- 双曲线x^2/16 -y^2/9=1上1点p到左焦点f1的距离是10,则点p到右焦点f2的距离是..(详细说明)
- 已知F1 F2为双曲线C:X^2-Y^2=1的左右焦点,点P在C上,角F1PF2=60度,则P到X轴的距离为多少?
- 双曲线x29−y216=1的两个焦点为F1,F2,点P在双曲线上.若PF1⊥PF2,求点P到x轴的距离.
- F1,F2是双曲线x^2/16-y^2/20=1的焦点,点P在双曲线上,若P到F1的距离是9,求P到F2的距离、、求过程、谢谢、、
- 双曲线x29−y216=1的两个焦点为F1、F2,点P在双曲线上,若PF1⊥PF2,则点P到x轴的距离为( ) A.85 B.165 C.4 D.163
- 液体压强公式推导是P液=F/S=G/S=mg/S=ρ液Vg/S=ρ液Shg/S=ρ液hg=ρ液gh
- 小学人教版六年级上册数学课本91页的所有内容答案
- 《散步》本文两两对称的句子很多,试找出两三例,并分析其表达效果.
猜你喜欢