即证(a+b)2+(b+c)2+(a+c)2>0,
因为a,b,c是不全相等的实数,所以(a+b)2>0,(b+c)2>0,(a+c)2>0,
所以(a+b)2+(b+c)2+(a+c)2>0显然成立.
所以a2+b2+c2>ab+bc+ca;
(2)∵a、b、c∈(0,+∞)且a+b+c=1,
∴(
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| b+c |
| a |
| a+c |
| b |
| a+b |
| c |
2
| ||
| a |
2
| ||
| b |
2
| ||
| c |
当且仅当a=b=c=
| 1 |
| 3 |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| b+c |
| a |
| a+c |
| b |
| a+b |
| c |
2
| ||
| a |
2
| ||
| b |
2
| ||
| c |
| 1 |
| 3 |