设定义在[-2,2]的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)<f(1),则实数m的取值范围是______.
人气:111 ℃ 时间:2019-08-18 18:54:20
解答
∵函数f(x)是偶函数,
∴f(x)=f(-x)=f(|x|),
∵函数f(x)在区间[0,2]上单调递减,
∴f(1-m)=f(|1-m|)<f(1),
∴
,解得2<m≤3或-1≤m<0,
故答案为2<m≤3或-1≤m<0.
推荐
- 设定义域在[-2,2]上的偶函数f(x)在区间[0,2]上单调递减,若f(1-m)
- 设定义在R上的偶函数f(x)在区间[0,+∞)上单调递减,如果f(m2-2)>f(m),求实数m的取值范围.
- 已知f(x)是定义域在(-1,1)上的偶函数,且在(0,1)上为增函数,f(a-2)-f(4-a^2)
- 设定义域在[-2.2]上的偶函数f(x)在区间[0.2]上是减函数,若f(1+m)
- 已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,则实数m的取值范围是_.
- 三分之一a(X-2)+4X=2-二分之一a的解是多少,X=3,a=?
- “泰山”本指__________,在这里比喻__________;“鸿毛”的本义是________,在这里形容____________
- 化简,合并同类项:(2m-3)+m-(3m-2)
猜你喜欢