设M为部分正整数组成的集合数列an的首项a1=1,前n想的和为SN,已知对任意整数k∈M
设M为部分正整数集合,数列{an}的首项a1=1,前n项和为Sn,已知对任意的整数k∈M,当整数n>k,Sn+k +Sn-k=2(Sn+Sk)都成立,设M={3,4},求数列{an}的通项公
求到an+1+k-an+1=an+1-an+1-k 我会
为什么有
所以n≥8时,an-6,an-3,an,an+3,an+6成等差数列,且an-6,an-2,an+2,an+6也成等差数列
人气:333 ℃ 时间:2020-07-06 21:58:17
解答
当k=3时
an+1+k-an+1=an+1-an+1-k可化为
a(n+4)-a(n+1)=a(n+1)-a(n-2)
令n=n-1∵n≥8∴n-1>3
∴a(n-3),an,a(n+3)为等差数列
令n=n-4n-4>3
∴a(n-3) an a(n-6) 为等差数列
可以把a(n-6)加到a(n-3),an,a(n+3)中
再另n=n+2
∴a(n+3) an a(n+6) 为等差数列
把a(n+6)加到a(n-3),an,a(n+3)中
∴n≥8时,an-6,an-3,an,an+3,an+6成等差数列
同理k=4时
an+1+k-an+1=an+1-an+1-k可化为
a(n+5)-a(n+1)=a(n+1)-a(n-3)
令n=n+1
∴a(n-2)a(n+2)a(n+6)成等差数列
令n=n-3>4
a(n-6)a(n-2)a(n+2)成等差数列
故a(n-6)a(n-2)a(n+2) a(n+6)成等差数列.
推荐
- 已知数列{an}的前n项和Sn满足an+2SnSn-1=0 (n≥2),a1=1/2,求an= _ .
- 设M为部分正整数集合,数列{an}的首项a1=1,前n项和为Sn,已知对任意的整数k∈M,当整数n>k,
- 设M部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立 (1)设的值; (2)设的
- 例3 已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2·a4=65,a1+a5=18.(1)求数列{an}的通项公式an
- 已知数列{an}满足a1=a,a(n+1)=an^2+a,集合M={a属于R|n属于N+,|an
- 英语翻译
- 已知菱形的两条对角线长分别为4cm,6cm,则菱形的周长为_.
- 求一篇400字左右的物理论文(初三级别)
猜你喜欢