f(x)=lnx-ax+(1-a)/x在区间(1,+∞)上为增函数,则实数a的取值范围是
人气:435 ℃ 时间:2019-08-20 11:02:33
解答
易知f'(x)=(a-1)/x^2+1/x-a
因f(x)为增函数
则f'(x)>0
即(a-1)/x^2+1/x-a>0
即a(1/x^2-1)-(1/x^2-1/x)>0
即a(1/x-1)(1/x+1)-1/x(1/x-1)>0
即(1/x-1)[(a-1)/x+a]>0
而x>1
则0<1/x<1
所以(a-1)/x+a<0
即a-1+ax<0
即a<1/(1+x)
又因x>1
则1+x>2
即1/(1+x)<1/2
所以a<1/2
推荐
- 已知函数f(x)=ax-1nx,若f(x)>1在区间(1,+∞)内恒成立,则实数a的范围为_.
- 已知F(x)=(1-x)除ax+lnx.若函数在[1,正无穷)上是增函数,求正实数a的取值范围,
- 已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+无穷大)内恒成立,则实数a的取值范围为_____
- 已知函数f(x)=1-x/ax+lnx.(1)若函数f(x)在〔1,+§)上为增函数,求正实数a的取值范围.
- 若函数f(x)=ax+lnx在区间[1,2]上为减函数,则实数a的取值范围是______?
- 电池的成分及性质
- 10N的水能产生10N的浮力吗?
- 7米的九分之一与1米的九分之七长度相等吗
猜你喜欢