> 其他 >
急求!设总体X的概率密度为f(x)=ae^(-ax),x>0;0,x=0;0,x=
人气:220 ℃ 时间:2019-08-21 21:03:28
解答
设L(a)=f(x1)*f(x2)...f(xn)
=a^n *e^[-a*(x1+x2+…+xn)]
取对数得到
lnL=n *lna -a*(x1+x2+…+xn)
再对a求导得到
L'/L=n/a - (x1+x2+…+xn)
令其等于0,
所以
n/a - (x1+x2+…+xn)=0

a=(x1+x2+…+xn)/n,
所以a的极大似然估计为X的样本均值 X拔
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版