在△ADC中,因为AD=CD,且DB平分∠ADC,
所以H为AC的中点.又由题设,E为PC的中点,
故EH∥PA.又EH⊂平面BDE,PA不包含于平面BDE,
所以PA∥平面BDE.
(II)证明:因为PD⊥平面ABCD,
AC⊂平面ABCD,所以PD⊥AC.
由(I)得,DB⊥AC.
又PD∩DB=D,故AC⊥平面PBD.
(Ⅲ) 由AC⊥平面PBD知,
BH为BC在平面PBD内的射影,
所以∠CBH为直线BC与平面PBD所成的角.
由AD⊥CD,AD=CD=1,DB=2
2 |
得DH=CH=
| ||
2 |
3
| ||
2 |
5 |
在Rt△BHC中,sin∠CBH=
CH |
BC |
| ||||
|
3
| ||
10 |
所以直线BC与平面PBD所成的角的正弦值为
3
| ||
10 |