已知BD、CE是三角形ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB,求证AP=AQ,AP垂直AQ
人气:239 ℃ 时间:2019-10-09 07:32:29
解答
连接AP和AQ
画出三角形ABP ,QCA
因为 BD垂直于AC,所以 角ABP+角BAC=90度
因为 CE垂直于AB,所以 角ACE+角BAC=90度
所以 角ABP=角ACE
又因为 BP=AC,CQ=AB
所以 三角形ABP与三角形QCA是全等三角形
所以 AP=AQ
而且 角APB=角QAC
在三角形ADP中,角APB+角PAC=90度
所以 角QAC+角PAC=90度
所以 角PAQ=90度
即 AP垂直于AQ
推荐
- BD,CE是三角形ABC的高,P在BD的延长线上,BP=AC,Q在CE上,CQ=AB,求证:AP=AQ,AP垂直于AQ
- 如图,已知BD,CE是三角形ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.判断线段AP和AQ的关系.
- 已知,如图BD,CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB 求证:(1)AP=AQ
- 如图,在△ABC中,BD、CE是△ABC的高,在BD上取点P,在CE的延长线上取点Q,使BP=AC,CQ=AB,猜想一下,AQ,AP有怎样的数量关系?为什么?
- 已知BD,CE分别是△ABC的AC,AB边上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.求证:(1)AP=AQ(2)AP⊥AQ
- 7.8x+3.6*2=24这个方程怎样解
- 电灯开关里面有吱吱的声音怎么回事?
- 中译英6句,
猜你喜欢