设抛物线y^2=2px的焦点为f,经过点f的直线与抛物线交于a、b两点,又m是其准线上一点,试证:直线ma、mf、mb
试证:MF、MB、MA的斜率为等差数列
人气:365 ℃ 时间:2020-04-11 02:33:18
解答
F(p/2,0),设AB直线方程为:y=k(x-p/2),代入抛物线方程,k^2*(x-p/2)^2=2px,k^2*x^2-p(k^2+1)x+p^2/4=0,
解得:x1=[p(k^2+1)+2p√(k^2+1)]/(2k^2),
x2=[p(k^2+1)-2p√(k^2+1)]/(2k^2),
再代入直线方程求得:y1=p(1+√(k^2+1))/k, y2=p(1-√(k^2+1))/k
即A(x1,y1),B(x2,y2)
设M(-p/2,y3),则MF的斜率kmf=-y3/p,
MA的斜率kma=(y3-y1)/(-p/2-x1)=(kp(1+√(k^2+1)-k^2*y3)/[p(k^2+1+√(k^2+1))],
MB的斜率kmb=(y3-y2)/(-p/2-x2)= (kp(1-√(k^2+1)-k^2*y3)/[p(k^2+1-√(k^2+1))],
kma+kmb=-2*y3/p=2*kmf,
所以,MA,MF,MB斜率成等差数列
推荐
- 设抛物线y^2=2px的焦点为F经过F的直线与抛物线交于A,B两点又M是其准线上点求证MA,MF,MB斜率成等差数列
- 若点A坐标为(3,2),F是抛物线y的平方=2x的焦点.点M在该抛物线上移动,求使|MA|+|MF|取得最小值时的点M的坐标
- 已知点M是抛物线y2=4x的一点,F为抛物线的焦点,A在圆C:(x-4)2+(y-1)2=1上,则|MA|+|MF|的最小值为( ) A.2 B.3 C.4 D.5
- 若点A的坐标(3,2),F是抛物线y^2=2x的焦点,点M在抛物线上移动时,使|MA| |MF|取得最小值的M的坐标?
- 若点A的坐标是(3、2),F为抛物线y^2=2x的焦点,点M在抛物线上移动时,求使MA+MF取值最小值的M的坐标
- 一儿曰:“我以日始出时去人近,而日中时远也.”怎么改间接引用句?
- 我明天就开学了,
- 已知x∈R,试比较x^4-2x^2+3x和x^2+3x+4的大小关系
猜你喜欢