> 数学 >
如图已知等腰梯形ABCD中,AD平行BC,M是AB的中点,DM垂直CM.求证:CD=AD+BC
用等腰梯形的中位线做
人气:437 ℃ 时间:2019-08-18 08:30:43
解答
证明取CD的中点N,连结MN
由M是AB的中点,N是CD的中点
∴MN是等腰梯形ABCD的中位线
∴AD+BC=2MN.(1)
又∵DM⊥CN
∴∠DMC=90°
即ΔDMC是直角三角形
由N是CD的中点
∴CD=2MN.(2)
由(1)和(2)得
:CD=AD+BC
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版