已知向量m=(sin,1),n=(根号3Acosx,2分之Acos2x)函数f(x)=m·n的最大值为6.求A
快.
人气:469 ℃ 时间:2019-09-22 04:30:39
解答
f(x)=m*n
=√3Asinxcosx+(A/2)cos2x
=(A)[(√3/2)sin2x+(1/2)sin2x)
=Asin(2x+π/6)
因f(x)最大值是6,则:A=±6
推荐
- 已知向量m=(sin,1),n=(根号3Acosx,2分之Acos2x)函数f(x)=m·n的最大值为6.
- 已知向量m=(sinx,1),n=(根号3Acosx,A/3cos2x)函数fx=向量m×n最大值为6,求A这是哪一年什么卷的高考题
- 已知向量m=(sin,1),n=(根号3Acosx,2分之Acos2x)函数f(x)=m·n的最大值为6.求A
- 已知向量m=(sinx,1),n=(根号3Acosx,A/3cos2x)函数fx=向量m×n最大值为6,求A
- 已知向量m=(sinx,3/2)n=(根号3Acosx,A/3cos2x)(A>0)函数f(x)=m·n的最大值为6
- 一队学生正以每小时6km的速度行进,老师有事要告诉排头,就以每小时10km的速度从排尾赶到排头,然后又以同样的速度返回排尾,一共用了7.5min,那么这列队伍的长度是多少?
- 11分之6加11分之5乘5分之3递等式计算
- can you help me with this problem?sorry,the problem is___difficult for me to work out
猜你喜欢