=cosx+1+√3sinx
=√3sinx+cosx+1
=2sin(x+π/6)+1
(1)求函数f(x)的最小正周期=2π/1=2π
(2)f(α-π/6)=1/3
2sinα+1=1/3
sinα=-1/3
α为第三象限角
∴cosα=-2√2/3
则 cos2a/(1+cos2α-sin2α)=cos2a/(2cos²a-2sinacosa)
=(cos²a-sin²a)/[2cosa(cosa-sina)]
=(sina+cosa)/(2cosa)
=(-1/3-2√2/3)/(-4√2/3)
=(4+√2)/4
(3)将函数f(x)上所有点的横坐标缩小为原来的1/2,纵坐标不变,再把所得的图像向下平行移动一个单位,得到g(x)的图像
g(x)=2sin(2x+π/6)
x∈[0,π/2]
2x+π/6∈[π/6,7π/6]
![](http://g.hiphotos.baidu.com/zhidao/wh%3D600%2C800/sign=8f1a6e836159252da342150204ab2f03/377adab44aed2e73dd370ab58601a18b86d6fa49.jpg)
g(x)+k=0有两个不等根
g(x)=-k
观察图像,只有在2x+π/6∈[π/6,π/2)和(π/2,7π/6]有两个不等根,2x+π/6不能等于π/2
∴1≤-k<2
-2<k≤-1