函数f(x)是定义在R上的奇函数且在[0,+∞)上是增函数,是否存在实数m,使f(4m-2mx)>f(4-2x^2)对所有x∈(0,1)都成立?
若存在,求出所有适合条件的实数m,若不存在,请说明理由.
人气:470 ℃ 时间:2019-08-22 18:12:39
解答
函数f(x)是定义在R上的奇函数且在[0,+∞)上是增函数→易知f(x)在(-∞,+∞)上是增函数
那么f(4m-2mx)>f(4-2x^2)→4m-2mx>4-2x^2→x^2+mx+(2m-2)>0
设g(x)=x^2+mx+(2m-2),其对称轴是x=m/2;
①当m/2≤0时,m≤0;使g(0)=0+(2m-2)>0→m>1,则不成立:{m≤0}∩{m>1}=空集
②当m/2≥1时,m≥2;使g(1)=1+m+(2m-2)>0→m>1/3解该不等式得m≥2且m>1/3→m≥2
③当0<(m/2)<1时,00→m∈{-1-√3,-1+√3}
取①②③的并集,得∈{-1-√3,-1+√3}∪{m≥2}
^^^老总,给我加分啊
推荐
- 设f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,且在(0+∞,)上是增函数.
- 已知,y=f(x)是定义在R上的奇函数,且在[0,正无穷)为增函数
- 已知定义在R上的奇函数,f(x)满足f(X-4)=-f(x),且在区间【0,2】上是增函数,则比较f(-25),f(11),f(80)的大小.
- 已知定义在R上的奇函数f(x),满足f(x-4)= - f(x),且在[0,2]上是增函数,则
- 已知函数f(x)是定义在R上的奇函数,在(0,+∞)是增函数,且f(1)=0,则f(x+1)<0的解集为_.
- 英语,体育,信息,那几科最有用?
- 已知函数f(x)=2的x次方+2的负x次方a(常数a属于R) 若a小于等于4,求证;函数f(x)在区间【1,正无穷】上是
- 等差数列:1,6,11,16,21,26.是怎样求出来的
猜你喜欢