设集合M={x|x=(kπ/2)+(π/4),k∈Z},N={x|x=(kπ/4)+(π/2),k∈Z},则M与N的关系是?
人气:491 ℃ 时间:2020-05-08 13:59:07
解答
M={x|x=kπ/2+π/4,k∈Z}
={x|x=(2k+1)π/4,k∈Z}
N={x|x=kπ/4+π/2,k∈Z}
={x|x=(k+2)π/2,k∈Z}
可以看出M必须是奇数倍的π/4,而N是任意整数倍的,所以M是N的子集,
【学习顶起】团队为您答题.
请点击下面的【选为满意回答】按钮.
推荐
- 设集合{x|x=kπ/2+π/4,k∈Z},N={x|x=kπ±π/4,k∈Z},判断M,N之间的关系
- 设集合M={x|x=k/2+1/4,k∈Z},N={x|x=k/4+1/2,k∈Z}集合M,N的关系满足
- 设集合M={x|x=k/2+1/4,k∈Z},N={x|x=k/4+1/2,k∈Z},则
- 集合M={x│x=kπ/2+π/4,k∈Z},N={x│x=kπ/4+π/2,k∈Z}
- 设集合M={x|x=k/2+1/4,k属于z},N={x|x=k/4+1/2,k属于z}则M与N关系是什么
- 第8天指的是时刻还是时间间隔?
- 思维跟思想有什么区别
- 美国地理位置与澳大利亚地理位置的相同处以及不同处
猜你喜欢