已知数列{an}其前n项和为Sn=3/2n^2+7/2n(n属于正整数)
设cn=9/(2an-7)(2an-1),数列{cn}的前n项和为Tn,求使不等式Tn>k/57对一切n属于正整数都成立的最大整数k的值
人气:227 ℃ 时间:2020-09-30 03:44:30
解答
Sn=(3/2)n^2+(7/2)n
n=1,a1=5
an =Sn - S(n-1)
= (3/2)(2n-1) +7/2
= 3n+2
cn=9/[(2an-7)(2an-1)]
=9/[(6n-3)(6n+3)]
= 1/[(2n-1)(2n+1)] >0
Tn =c1+c2+...+cn
≥T1
= 1/3
1/3 > k/57
k = 57/3 = 19= 1/[(2n-1)(2n+1)] >0是设的吗2n-1 >0; n=1,2,3,...2n+1 >0 ; n=1,2,3,....=> 1/[(2n-1)(2n+1)] >0
推荐
- 已知数列{an}的前n项和为sn,且sn=2n^2+n,n是正整数,又an=4log(2)bn+3
- 已知an=32n−11(n∈N*),记数列{an}的前n项和为Sn,则使Sn>0的n的最小值为( ) A.10 B.11 C.12 D.13
- 数列{an}共有k项,其前n项和Sn=2n^2+n(n∈[1,k],n为正整数)
- 已知数列{an}的前n项和为Sn,且Sn=2n^2+n,n∈正整数
- 已知数列AN的前N项和为SN,SN=2an-2n(N属于正整数)
- 在一次旅途中,有一批游客过一条河,如果每只船坐10人,那么剩4人;如果每只船坐12人,那么还剩1只船,则船有多少只?这批游客有多少人?(列方程解答)
- 工程队修路,第一天修全长的1/8多16千米,第二天修全长的1/6少2千米,剩下88千米,这条路多长
- 12.Would the girl you were be happy about the woman that you have become?英译汉,
猜你喜欢