已知a、b、c是一直角三角形的三边,c是斜边,且均为正整数,a为质数;求证明
已知a、b、c是一直角三角形的三边,c是斜边,且均为正整数,a为质数;证明
(1)b与c两数必为一奇一偶,且a不可能是2;
(2)2(a+b+1)是完全平方数.
人气:214 ℃ 时间:2019-11-04 12:43:06
解答
(1)
证:
由题意得
a^2+b^2=c^2
a^2=c^2-b^2=(c+b)(c-b)
c+b,c-b均为整数.
a为质数,因子只有1和a,a^2的因子只有1,a,a^2,且a^2>a,
c+b,c-b的可能取值只能为
c+b=a^2
c-b=1
c=(a^2+1)/2 b=(a^2-1)/2
c-b=1,b,c为两连续的自然数,必为一奇一偶.
c,b为整数,a^2应为奇数,a为奇数,不可能是2.
(2)
由(1)得
a^2+b^2=(b+1)^2
解得2b=a^2-1
代入2(a+b+1)
2(a+b+1)
=2a+a^2-1+2
=a^2+2a+1
=(a+1)^2
为完全平方数.
推荐
- 已知Rt△ABC的两条直角边的长a、b均为整数,且a为质数,若斜边c也是整数,求证:2(a+b+1)是完全平方数.
- 若直角三角形两直角边长为a,b斜边长为c,且abc均为正整数,a为质数,试证明2(a+b+1)
- 已知a、b、c均为正整数,且满足a^2+b^2=c^2,又a为质数.证明:(1).b与c两数必为一奇一偶 (接下)
- 已知直角三角形的两条直角边边长分别为l cm,m cm,斜边为n cm,且l m n均为整数,l为质数,证明2(m+l+1)是
- 已知直角三角形的两直角边分别是为a、b,斜边长为c,且a、b、c为正整数,a为质数...
- 3/7,42.8%,0.43 谁最大 谁最小
- 在等比数列{an}中,a4+a7=2,a5a6=-8,则a1+a10=_.
- 己知a+b=2,ab=-1则¹/a+¹/b=()
猜你喜欢